首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1513篇
  免费   143篇
  国内免费   3篇
  2024年   1篇
  2023年   5篇
  2022年   1篇
  2021年   20篇
  2020年   10篇
  2019年   17篇
  2018年   32篇
  2017年   18篇
  2016年   23篇
  2015年   63篇
  2014年   79篇
  2013年   77篇
  2012年   116篇
  2011年   113篇
  2010年   73篇
  2009年   87篇
  2008年   99篇
  2007年   109篇
  2006年   106篇
  2005年   105篇
  2004年   105篇
  2003年   111篇
  2002年   95篇
  2001年   13篇
  2000年   12篇
  1999年   13篇
  1998年   19篇
  1997年   21篇
  1996年   15篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   14篇
  1991年   8篇
  1990年   10篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1977年   2篇
  1976年   4篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1659条查询结果,搜索用时 15 毫秒
71.
The intermittent vascular occlusion occurring in sickle cell disease (SCD) leads to ischemia-reperfusion injury and activation of inflammatory processes including enhanced production of reactive oxygen species and increased expression of inducible nitric-oxide synthase (NOS2). Appreciating that impaired nitric oxide-dependent vascular function and the concomitant formation of oxidizing and nitrating species occur in concert with increased rates of tissue reactive oxygen species production, liver and kidney NOS2 expression, tissue 3-nitrotyrosine (NO(2)Tyr) formation and apoptosis were evaluated in human SCD tissues and a murine model of SCD. Liver and kidney NOS2 expression and NO(2)Tyr immunoreactivity were significantly increased in SCD mice and humans, but not in nondiseased tissues. TdT-mediated nick end-label (TUNEL) staining showed apoptotic cells in regions expressing elevated levels of NOS2 and NO(2)Tyr in all SCD tissues. Gas chromatography mass spectrometry analysis revealed increased plasma protein NO(2)Tyr content and increased levels of hepatic and renal protein NO(2)Tyr derivatives in SCD (21.4 +/- 2.6 and 37.5 +/- 7.8 ng/mg) versus wild type mice (8.2 +/- 2.2 and 10 +/- 1.2 ng/mg), respectively. Western blot analysis and immunoprecipitation of SCD mouse liver and kidney proteins revealed one principal NO(2)Tyr-containing protein of 42 kDa, compared with controls. Enzymatic in-gel digestion and MALDI-TOF mass spectrometry identified this nitrated protein as actin. Electrospray ionization and fragment analysis by tandem mass spectrometry revealed that 3 of 15 actin tyrosine residues are nitrated (Tyr(91), Tyr(198), and Tyr(240)) at positions that significantly modify actin assembly. Confocal microscopy of SCD human and mouse tissues revealed that nitration led to morphologically distinct disorganization of filamentous actin. In aggregate, we have observed that the hemoglobin point mutation of sickle cell disease that mediates hemoglobin polymerization defects is translated, via inflammatory oxidant reactions, into defective cytoskeletal polymerization.  相似文献   
72.
Increasing renal pelvic pressure increases afferent renal nerve activity (ARNA) by a PGE(2)-mediated release of substance P (SP) from renal pelvic nerves. The role of cAMP activation in the PGE(2)-mediated release of SP was studied by examining the effects of the adenylyl cyclase (AC) activator forskolin and AC inhibitor dideoxyadenosine (DDA). Forskolin enhanced the bradykinin-mediated release of SP from an isolated rat renal pelvic wall preparation, from 7.3 +/- 1.3 to 15.6 +/- 3.0 pg/min. PGE(2) at a subthreshold concentration for SP release mimicked the effects of forskolin. The EP(2) receptor agonist butaprost, 15 microM, and PGE(2), 0.14 microM, produced similar increases in SP release, from 5.8 +/- 0.8 to 17.0 +/- 2.3 pg/min and from 8.0 +/- 1.3 to 21.6 +/- 2.7 pg/min. DDA blocked the SP release produced by butaprost and PGE(2). The PGE(2)-induced release of SP was also blocked by the PKA inhibitors PKI(14-22) and H-89. Studies in anesthetized rats showed that renal pelvic administration of butaprost, 10 microM, and PGE(2), 0.14 microM, resulted in similar ARNA responses, 1,520 +/- 390 and 1,170 +/- 270%. s (area under the curve of ARNA vs. time) that were blocked by DDA. Likewise, the ARNA response to increased renal pelvic pressure, 7,180 +/- 710%. s, was blocked by DDA. In conclusion, PGE(2) activates the cAMP-PKA pathway leading to a release of SP and activation of renal pelvic mechanosensory nerve fibers.  相似文献   
73.
The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.  相似文献   
74.
A series of novel, selective TNF-alpha converting enzyme inhibitors based on 4-hydroxy and 5-hydroxy pipecolate hydroxamic acid scaffolds is described. The potency and selectivity of TACE inhibition is dramatically influenced by the nature of the sulfonamide group which interacts with the S1' site of the enzyme. Substituted 4-benzyloxybenzenesulfonamides exhibit excellent TACE potency with >100x selectivity over inhibition of matrix metalloprotease-1 (MMP-1). Alkyl substituents on the ortho position of the benzyl ether moiety give the most potent inhibition of TNF-alpha release in LPS-treated human whole blood.  相似文献   
75.
Stimulation of cardiomyocytes to endogenously evolve nitric oxide is shown by microsensor measurements on single cells to lead to transient nitric oxide concentrations of a few hundred nanomolar. At these submicromolar concentrations, no evidence could be found for the expected reaction between nitric oxide generated and the oxymyoglobin present in the cells: nitric oxide + oxymyoglobin --> nitrate + metmyoglobin. No metmyoglobin formation was detected by electron paramagnetic resonance spectroscopy, and microsensor measurements revealed near quantitative conversion of the nitric oxide to nitrite rather than nitrate ion. Moreover, the rate of nitrite formation is shown to be too rapid to be accounted for by non-enzymatic means. The essentially quantitative and rapid catabolism of nitric oxide to nitrite ion can plausibly be explained on the basis of a cycle of reactions catalyzed by cytochrome c oxidase. It is demonstrated with the purified hemoproteins in vitro that the terminal oxidase can outcompete oxymyoglobin for available nitric oxide. It is proposed that under normal physiological and most pathological (non-inflammatory) conditions, reaction with cytochrome c oxidase is the major route by which NO is removed from mitochondria-rich cells.  相似文献   
76.
We have identified a missense mutation in the motor domain of the neuronal kinesin heavy chain gene KIF5A, in a family with hereditary spastic paraplegia. The mutation occurs in the family in which the SPG10 locus was originally identified, at an invariant asparagine residue that, when mutated in orthologous kinesin heavy chain motor proteins, prevents stimulation of the motor ATPase by microtubule-binding. Mutation of kinesin orthologues in various species leads to phenotypes resembling hereditary spastic paraplegia. The conventional kinesin motor powers intracellular movement of membranous organelles and other macromolecular cargo from the neuronal cell body to the distal tip of the axon. This finding suggests that the underlying pathology of SPG10 and possibly of other forms of hereditary spastic paraplegia may involve perturbation of neuronal anterograde (or retrograde) axoplasmic flow, leading to axonal degeneration, especially in the longest axons of the central nervous system.  相似文献   
77.
The genomes of Mycobacterium tuberculosis H37Rv and CDC1551 each contain two prophage-like elements, phiRv1 and phiRv2. The phiRv1 element is not only absent from Mycobacterium bovis BCG but is in different locations within the two sequenced M. tuberculosis genomes; in both cases phiRv1 is inserted into a REP13E12 repeated sequence, which presumably contains the bacterial attachment site, attB, for phiRv1. Although phiRv1 is probably too small to encode infectious phage particles, it may nevertheless have an active integration/excision system and be capable of moving from one chromosomal position to another. We show here that the M. tuberculosis H37Rv phiRv1 element does indeed encode an active site-specific recombination system in which an integrase of the serine recombinase family (Rv1586c) catalyses integration and excision and a small, basic phiRv1-encoded protein (Rv1584c) controls the directionality of re-combination. Integration-proficient plasmid vectors derived from phiRv1 efficiently transform BCG, can utilize four of the seven REP13E12 sites present in BCG as attachment sites, and can occupy more than one site simultaneously.  相似文献   
78.
79.
A 1X22X41 combinatorial library or 902 compounds of indinavir analogues was synthesized on the solid support to identify a replacement for the aminoindanol moiety at P2'. 2,6-Dimethyl-4-hydroxy phenol was discovered to be a good replacement for aminoindanol.  相似文献   
80.
Elastin-like polypeptides (ELPs) are artificial polypeptides with unique properties that make them attractive as a biomaterial for tissue-engineered cartilage repair. ELPs are composed of a pentapeptide repeat, Val-Pro-Gly-Xaa-Gly (Xaa is any amino acid except Pro), that undergo an inverse temperature phase transition. They are soluble in aqueous solution below their transition temperature (T(t)) but aggregate when the solution temperature is raised above their T(t). This study investigates the rheological behavior of an un-cross-linked ELP, below and above its T(t), and also examines the ability of ELP to promote chondrogenesis in vitro. A thermally responsive ELP with a T(t) of 35 degrees C was synthesized using recombinant DNA techniques. The complex shear modulus of the ELP increased by 3 orders of magnitude as it underwent its inverse temperature phase transition, forming a coacervate, or gel-like, ELP phase. Values for the complex shear moduli of the un-cross-linked ELP coacervate are comparable to those reported previously for collagen, hyaluronan, and cross-linked synthetic hydrogels. Cell culture studies show that chondrocytes cultured in ELP coacervate maintain a rounded morphology and their chondrocytic phenotype, characterized by the synthesis of a significant amount of extracellular matrix composed of sulfated glycosaminoglycans and collagen. These results suggest that ELPs demonstrate great potential for use as in situ forming scaffolds for cartilaginous tissue repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号